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Abstract A Yang-Mills formulation of Einstein gravity with spin-affine connection as the
dynamical variable of gravitational field is suggested based on the Stephenson-Kilmister-
Yang (SKY) equation. A physically interesting property of the present formalism is that
the Einstein field equation appears as a first-integral solution to the Yang-Mills type gravita-
tional gauge field equation. The gravitational current density, the law of conservation and the
gravitational gauge field strength in vierbein formulation are discussed. The present scheme
could provide us with new insight into a possible way to include both Yang-Mills field and
gravitational gauge field into one framework of generalized vierbein fields.

Keywords Vierbeins · Spin connection · Stephenson-Kilmister-Yang equation ·
First-integral solution

1 Introduction

With the development of quantum field theories and the increasing evidences from observa-
tional cosmology [1–3], much work has been performed in order to suggest extended the-
ories of gravitation and to interpret new gravitational phenomena and effects [4–6]. These
included, e.g., the running Newtonian gravitational constant on the cosmological-horizon
scale as a modification to Einstein gravity [5], the chameleon-field model (compatible with
present fifth-force experiments and cosmological observations) [6], the gravity of antisym-
metric skewon field (which, together with symmetric metric, forms Hermitian fiber met-
ric) [7], various versions of gravity with torsion [8, 9], 1/R-correction gravity [10], and a
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variety of gauge approaches to gravitation [11]. In this paper, we suggest a gravitational
gauge theory using the spin-affine connection as a gauge field connection. By means of the
gauge approach, the Einstein gravity theory as a field theory of Yang-Mills type will be re-
formulated. In the literature, though many references have pointed out that the gravitational
field is a non-Abelian gauge field [12–15], yet the field equation in general relativity (GR)
is not a Yang-Mills type equation. We find that the reason why the local Lorentz symme-
try in the formulation of both metric and Levi-Civita connection does not allow to describe
gravity as a Yang-Mills type gauge interaction is because these two gauge interactions are
formulated in different languages: specifically, GR is constructed using Levi-Civita connec-
tion (in terms of the metric), while the Yang-Mills gauge field theory is described using
non-Abelian gauge field connection, which can actually be expressed in terms of the so-
called ‘Yang-Mills vielbein’ (this would be addressed in this paper). In other words, in the
Yang-Mills gauge theory, the connection and the fundamental dynamical variable are the
same physical quantities, while in GR the connection (Levi-Civita connection) and the fun-
damental dynamical variable (metric) are not the same quantities. It is possible, in fact, to
demonstrate that this asymmetry between GR and Yang-Mills gauge field theory can be
avoided if we introduce the formulation of vielbein (in four dimensions we would call it a
vierbein) for gravity. Here, we will verify that in the formulation of vierbein, where the spin-
affine connection is written in terms of the vierbein fields, one can identify the spin-affine
connection with the dynamical variable of a non-Abelian gauge field, and GR can then be
reformulated as a gauge field theory of Yang-Mills type, where the field equation is sug-
gested based on the local Lorentz-group gauge invariance with the spin-affine connection
involved in the Yang-Mills covariant derivatives (in the vierbein formulation).

The present gravitational gauge formalism is developed based on the Stephenson-
Kilmister-Yang theory, which contains a vacuum gravitational field equation of Yang-Mills
type with Levi-Civita connection being the dynamical variable. One of the most important
properties of this equation is such that it is a third-order differential equation of metric but
second-order equation of Levi-Civita connection. In 1974 Yang considered an integral for-
malism of gauge fields and suggested such a new gravitational field equation [16], where
the Christoffel symbol (Levi-Civita connection) serves as a non-Abelian gauge field [16].
Pavelle immediately pointed out that this gravitational field equation is identical with that
proposed by Kilmister in 1959 [17], and then in the references published later, some authors
referred to it as the Kilmister-Yang equation [18]. But actually, it might be Stephenson who
was the first one to propose such a kind of theory (even one year earlier than Kilmister did)
[19]. Thus the Kilmister-Yang equation can also be referred to as the Stephenson-Kilmister-
Yang (SKY) equation. In general, the source-free SKY field equation can be written as

∇μRμ
ναβ = 0, (1)

or equivalently in the form ∇αRβν − ∇βRαν = 0. It can be readily verified that the Ein-
stein vacuum field equation has already been involved in (1). However, the SKY equation
has some other new solutions, which were viewed as unphysical solutions [20]. It was sug-
gested that the SKY equation should be supplemented by further restrictions on the class
of allowable spacetime in order to rule out the so-called unphysical solutions [20]. Later,
the SKY vacuum field equation received increasingly more attentions from researchers. For
example, the SKY equation for the geometrically degenerate cases of conformally flatness
and decomposability of spacetime was studied [18, 21], and the possible unphysical met-
rics [20] that belong to these degenerate classes [18, 21] were considered. Some specific
physical properties such as the monopole gravitational radiation and the Birkhoff theorem
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relevant to the SKY equation were discovered [22]. The static, spherically symmetric solu-
tion to the SKY equation was obtained, which showed that the Solar experiments cannot yet
distinguish between the SKY equation and the Einstein vacuum gravitational equation [17].

Though it has some “unphysical” solutions, the SKY equation has already contained all
the solutions of the Einstein vacuum field equation. Therefore, the SKY equation deserves
further investigations, since it can be said to be more general than the Einstein field equation.
We shall generalize the SKY gravitational field equation of vacuum to the case with sources
(matter fields), and then rewrite it as a Yang-Mills type gravitational gauge field equation in
the vierbein formulation, where the spin-affine connection (or spin connection, for brevity)
serves as the Yang-Mills dynamical variable. The present prescription complies with the lo-
cal Lorentz-group gauge symmetry. In the conventional gravity theory, it is the metric that
serves as the dynamical variable. In the present formalism, however, we have a new dynam-
ical equation (i.e., a Yang-Mills type gravitational gauge field equation) with a new dynami-
cal variable (i.e., spin-affine connection). It should be noted that in the literature Camenzind
has suggested such a kind of theory, where the Lorentz frame bundle on the spacetime acts
as gauge bundle and the Lorentz connection (spin connection) as gauge connection, and
presented a Yang-Mills type gravitational field equation with source of matter [23–25]. In
this paper, however, the cosmological constant term (besides the matter term) is also taken
into account. By using the Yang-Mills type gauge field equation of gravity, we can suggest a
different viewpoint about the physical meanings of the cosmological constant, and provide
new insight to look at the cosmological constant problem (since the Yang-Mills gravitational
field equation is a third-order differential equation of metric, the covariant derivative of the
cosmological constant term expressed by the vierbeins such as −(iλ/4)(ϑμ

qϑ
ν
p −ϑμ

pϑν
q)

unavoidably vanishes). In addition, a new concept (Yang-Mills vielbein) will also be defined
and the vielbein version for the Yang-Mills gauge field theory will be suggested, and then
the spin-connection gravitational gauge theory can be generalized to the case that includes
both gravitation and Yang-Mills gauge interactions.

2 The SKY Equation with Source and the Spin-Connection Gauge Field in the
Vierbein Formulation

In order to suggest a Yang-Mills type field equation of gravitation, we should first refor-
mulate the Riemannian geometry and torsionless gravity using the formulation of vierbein,
where the vierbein fields satisfy the relations gμν = ϑμ

rerν and δμ
ν = ϑμ

rer
ν . If the metric

gμν (viewed as the element of a matrix g) is a complex Hermitian metric (i.e., gμν has a sym-
metric real part and an antisymmetric imaginary part), then one can show that erν = (ϑνr )

∗
and ϑμ

r = (er
μ)∗, where the asterisk denotes the complex conjugate. Here, the Greek and

Latin indices denote the Einstein local coordinate indices and the spacetime indices of local
inertial frame (Lorentz coordinate indices), respectively. A gravity theory can be established
based on the complex Hermitian-metric Riemannian geometry. In this theory, the nonzero
torsion tensor must appear, since the contorsion is no longer a tensor and cannot be taken
to be zero. In the gravity theory with real symmetric metric, however, the contorsion is a
tensor, and then both the contorsion and the torsion can be assumed to be zero. In gen-
eral, we can suggest a Yang-Mills type gravity theory in the vierbein formulation, where
the complex Hermitian-metric Riemannian spacetime exhibits its nonzero torsion. But as a
tentative study, here we concentrate our attention only on the curvature-only theory, where
gμν is a real Hermitian metric (with vanishing imaginary part) and the contorsion is taken
to be zero (besides, the metric is assumed to be analytic. Gravitomagnetic monopole would
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lead to the non-analytic metric [26, 27], which we will not consider, for simplicity). Under
this condition, one can arrive at erν = ϑνr , ϑν

r = er
ν (and hence we have ϑν

r = er
ν and

erν = ϑνr ) as well as the relations between the metric and the vierbeins: gμν = er
μerν and

δμ
ν = er

μer
ν . In this paper, we choose the metric sign convention (+ − −−). In the Rie-

mannian geometry, the Levi-Civita covariant derivatives of the vierbeins are defined through
∇λϑνr = ∂λϑνr − ϑσr


σ
λν and ∇λϑ

ν
r = ∂λϑ

ν
r + 
ν

λσ ϑσ
r . Then it follows that the Levi-

Civita affine connection can be expressed in terms of the vierbein fields:


μ
λν = ϑμr∂λϑνr + Sμ

λν, (2)

where Sμ
λν = ϑνr∇λϑ

μr (∇λ denotes the Levi-Civita covariant derivative).
Now we rewrite the Riemannian curvature tensor (using the vierbein formulation) in

terms of the spin-connection gauge field, and then rewrite the Einstein gravitational field
equation as a version of Yang-Mills type. We start the derivation from the Bianchi identity.
We contract the coordinate index μ with γ in the Bianchi identity ∇γ Rαβ

μ
ν + ∇βRγα

μ
ν +

∇αRβγ
μ

ν = 0, and obtain ∇μRαβ
μ

ν + ∇βRμα
μ

ν + ∇αRβμ
μ

ν = 0. By using the definition
of Ricci tensor Rαν = Rμα

μ
ν , Rβν = −Rβμ

μ
ν , the Bianchi identity becomes ∇μRαβ

μ
ν =

∇αRβν − ∇βRαν . By introducing the vierbein fields, one can rewrite the Bianchi identity as
the form

∇μRrsμ
ν = (∇μRαβ

μ
ν

)
ϑαrϑβs + Rαβ

μ
ν∇μ

(
ϑαrϑβs

)
. (3)

We shall now obtain the relations that relate ∇μϑαr and ∇μϑβs to the spin connections:
(i) by using the relation Sλμ

α = (∇μϑλs)ϑ
αs = −ϑλs∇μϑαs , we can obtain ϑλrSλμ

α =
−ϑλrϑλs∇μϑαs ⇒ Sr

μ
α = −∇μϑαr ; (ii) by using the definition Sβ

μ
ν = (∇μϑβr)ϑν

r , we
can arrive at Sβ

μ
νϑν

s = (∇μϑβr )ϑν
rϑν

s ⇒ Sβ
μ

s = ∇μϑβs . Then, based on the following
two important relations

∇μϑαr = −Sr
μ

α, ∇μϑβs = Sβ
μ

s, (4)

the second term on the right-handed side of the identity (3) becomes

Rαβ
μ

ν∇μ

(
ϑαrϑβs

) = Rαβ
μ

ν

(∇μϑαr
)
ϑβs + Rαβ

μ
νϑ

αr∇μϑβs

= −Rαβ
μ

νS
r
μ

αϑβs + Rαβ
μ

νϑ
αrSβ

μ
s

= −Sr
μtR

tsμ
ν + Rrtμ

νStμ
s

= −[Sμ,�μ
ν]rs , (5)

where we have substituted the relations Sr
μ

α = Sr
μtϑ

αt and Sβ
μ

s = ϑβtStμ
s . The definitions

Rtsμ
ν = Rαβ

μ
νϑ

αtϑβs , Rrtμ
ν = Rr

β
μ

νϑ
βt and Rtsμ

ν ≡ (�μ
ν)

ts , Rrtμ
ν ≡ (�μ

ν)
rt have been

used in (5). In the following analysis, the definitions of the spin connection as well as the
Riemannian curvature tensor of the vierbein formulation, such as (Sμ)r

t ≡ Sr
μt , (Sμ)t

s ≡
Stμ

s , and (�μ
ν)

rs ≡ Rrsμ
ν = ϑαrRαβ

μ
νϑ

βs , will always be adopted for derivations. Based
on the above relations, it follows from (3) and (5) that the Bianchi identity becomes

∇μ(�μ
ν)

rs = (∇αRβν − ∇βRαν

)
ϑαrϑβs − [Sμ,�μ

ν]rs . (6)

By using the Einstein gravitational field equation Rβν = κT̂βν , one can arrive at

∇μ(�μ
ν)

rs + [Sμ,�μ
ν]rs = κ

(
∇αT̂βν − ∇β T̂αν

)
ϑαrϑβs . (7)
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Here, the source tensor T̂βν has a form T̂βν = τβν −gβντ/2 − (λ/κ)gβν (in four-dimensional
spacetime) or has a general form

T̂βν = τβν − 1

2

(
1

d
2 − 1

)

gβντ − λ

κ

(
1

d
2 − 1

)

gβν (8)

(in d-dimensional spacetime), where τβν denotes the energy-momentum tensor of matter
fields (the scalar τ = gβντβν ) and λ stands for the cosmological constant. We are now in
a position to study the property of the spin connection (Sμ)rs (i.e. Sr

μ
s ). As Sr

μ
s is anti-

symmetric in indices r and s, i.e., Sr
μ

s = −Ss
μ

r , we have (S†
μ)rs = −(Sμ)rs , S†

μ = −Sμ,
where the Lorentz indices r, s are regarded as the matrix indices. If we define a new quan-
tity Šμ = iSμ, then we have (Š†

μ)rs = (Šμ)rs , Š†
μ = Šμ. This means that Šμ is a Hermitian

spin-connection non-Abelian gauge field potential (dynamical variable). Hence, (7) can be
rewritten as a Yang-Mills type gauge field equation

∇μ(�μ
ν)

rs − i[Šμ,�μ
ν]rs = κ

(
∇αT̂βν − ∇β T̂αν

)
ϑαrϑβs . (9)

Now let us see whether (�μ
ν)

rs could be expressed in terms of the spin-connection non-
Abelian gauge field potential (i.e., whether it can be reformulated as a standard Yang-Mills
gauge field strength). This is not a new problem, since the authors of many references have
considered it from various aspects [12–15]. By using the definition of Levi-Civita covariant
derivative, the second-order covariant derivative of the vierbein ϑτ

r yields a relation

ϑτ
r ;μ;ν − ϑτ

r ;ν;μ = ϑβ
rRβ

τμν

⇒ (
ϑτ

r ;μ;ν − ϑτ
r ;ν;μ

)
ϑτs = ϑβ

rRβ
τμνϑ

τs, (10)

which can be rewritten as

(�μν)
rs = (

ϑτ
r ;μ;ν − ϑτ

r ;ν;μ
)
ϑτs . (11)

With the help of the relations in (4), we can obtain

ϑτ
r ;μ;νϑτs = ∇νS

s
μ

r + (SμSν)
rs, ϑτ

r ;ν;μϑτs = ∇μSs
ν
r + (SνSμ)rs . (12)

Thus the Riemannian curvature tensor in the formulation of vierbein is of the form (�μν)
rs =

[∇νS
s
μ

r + (SμSν)
rs] − [∇μSs

ν
r + (SνSμ)rs], which can be rewritten as ∇μSr

ν
s − ∇νS

r
μ

s +
(SμSν)

rs − (SνSμ)rs = (∇μSν − ∇νSμ + [Sμ,Sν])rs . Therefore, we have

(�μν)
rs = 1

i

(
∇μŠν − ∇ν Šμ − i[Šμ, Šν]

)rs

, (13)

or �μν = (∇μŠν − ∇ν Šμ − i[Šμ, Šν])/i. It follows that a Hermitian spin-connection gauge
field strength (curvature) can be defined as �̌μν = i�μν . Thus, one can have �̌μν = ∇μŠν −
∇ν Šμ − i[Šμ, Šν] whose component (matrix element) is given by (�̌μν)

rs = (∇μŠν −∇ν Šμ −
i[Šμ, Šν])rs .

Now the field equation (9) that contains the Einstein equation can be rewritten as

∇μ(�̌μ
ν)

rs − i[Šμ, �̌μ
ν]rs = κi

(
∇αT̂βν − ∇β T̂αν

)
ϑαrϑβs . (14)
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Here, the current density of the source is

(Jν)
rs = i

(
∇αT̂βν − ∇β T̂αν

)
ϑαrϑβs . (15)

Equation (14) can be rewritten as

∇μ�̌μ
ν − i[Šμ, �̌μ

ν] = κJν, (16)

or

Dμ�̌μ
ν = κJν, (17)

where the spin-connection covariant derivative Dμ = ∇μ − i[Šμ, · ]. This is the Yang-Mills
type field equation of gravitation obtained in the vierbein formulation.

In the regular prescription of gravity in GR, where the formulation of both the metric and
the Levi-Civita connection is used, there are almost no similarities between GR and Yang-
Mills theory seen from the mathematical structures of the field equations. We have shown
(in the representation of tensor for the local Lorentz group) that the Einstein field equation of
gravitation in the vierbein formulation can be reformulated as a Yang-Mills version, where
the dynamical variable of the gauge field is the spin connection, and the Lorentz group is
the local gauge group.

3 Gravitational Current Density and Law of Conservation

We have defined a gravitational current density by using the gravitational gauge field theory.
Here we discuss the current density, (Jν)

rs , on the right-handed side of the new gravitational
field equation (16). As the Lorentz indices r, s can be regarded as the matrix indices in the
vierbein formulation, we can now consider its complex conjugate:

((Jν)
rs)

∗ = i
(
∇αT̂βν − ∇β T̂αν

)
ϑαsϑβr , (18)

which equals (Jν)
sr . Besides, it can be readily verified that, for a matrix, we have an identity

((Jν)
rs)∗ ≡ (J †

ν )sr . Thus, the result of (18) means that J †
ν = Jν , namely, Jν can be viewed as

a Hermitian current density. Therefore, we obtain a non-Abelian current density that is in-
volved in the gravitational interaction. It can be shown that the gravitational current density,
(Jν)

sr , of matter field can be rewritten as (Jν)
sr = i[Dα(T̂βνϑ

αsϑβr )− Dβ(T̂ανϑ
αsϑβr )], i.e.,

(Jν)
sr = iDμ(ϑμsT̂ r

ν − ϑμr T̂ s
ν) ≡ 2Dμ(Čμ

ν)
sr , (19)

where the Hermitian source tensor (Čμ
ν)

sr is defined as

(Čμ
ν)

sr = i

2

(
ϑμsT̂ r

ν − ϑμr T̂ s
ν

)
. (20)

It follows from (14) to (17) that the gravitational field equation can now be rewritten as a
form of spin-connection covariant divergence:

Dμ

[
(�̌μν)rs − 2κ(Čμν)rs

]
= 0. (21)
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In what follows, we deal with the problem of conservation law of the current density. In
the torsion-free curvature-only differential geometry, it can be readily verified that ∇ν∇μ�̌μν

vanishes, i.e.,

∇ν∇μ�̌μν = 1√−g

∂

∂xν

(√−g∇μ�̌μν
)

= 1√−g

∂2

∂xν∂xμ

(√−g�̌μν
)

≡ 0. (22)

According to the Yang-Mills type gravitational field equations Dμ�̌μν = κJ ν , i.e., ∇μ�̌μν −
i[Šμ, �̌μν] = κJ ν , we can define an effective current density

J ν
eff = J ν + i

κ
[Šμ, �̌μν]. (23)

Thus the equation of conserved current is given by

∇ν J ν
eff = 0. (24)

Equations (23) and (24) are the conserved current density and its continuity equation, re-
spectively. Equation (24) is, however, not a Yang-Mills gauged covariant equation. As we
will show in the following section, the present Yang-Mills formulation of gravity is a local
Lorentz-group gauge theory, where the Yang-Mills covariant derivative contains the spin
connection. For this reason, we need to construct a Yang-Mills gauged covariant equation
for the conservation law of current density. The expected conservation equation would be of
the form

DνJ
ν = 0. (25)

Now let us show that (25) indeed holds true in the Yang-Mills formulation of gravity. Ac-
cording to the Yang-Mills type gravitational field equation Dμ�̌μν = κJ ν , in order to prove
(25), we should first establish that Dν Dμ�̌μν = 0 is correct. The calculation is presented as
follows:

Dν Dμ�̌μν = ∇ν

(
∇μ�̌μν − i[Šμ, �̌μν]

)
− i

[
Šν,∇μ�̌μν − i[Šμ, �̌μν]

]

= ∇ν∇μ�̌μν − i[∇ν Šμ, �̌μν] − i[Šμ,∇ν�̌
μν] − i

[
Šν,∇μ�̌μν

]
−

[
Šν, [Šμ, �̌μν]

]

= −i[∇ν Šμ, �̌μν] −
[
Šν, [Šμ, �̌μν]

]
, (26)

where the relations ∇ν∇μ�̌μν = 0 (i.e., (22)) and −i[Šμ,∇ν�̌
μν] − i[Šν,∇μ�̌μν] = 0 have

been substituted. Then, according to the Jacobi identity [Šν, [Šμ, �̌μν]] + [�̌μν, [Šν, Šμ]] +
[Šμ, [�μν, Šν]] = 0, we can have [Šν, [Šμ, �̌μν]] + [Šν, [�νμ, Šμ]] = [[Šν, Šμ], �̌μν], and
then obtain a relation [Šν, [Šμ, �̌μν]] = [[Šν, Šμ], �̌μν]/2. Thus, the formula (26) becomes

Dν Dμ�̌μν = −i

[
∇ν Šμ − i

2
[Šν, Šμ], �̌μν

]
. (27)
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Hence, one can arrive at Dν Dμ�̌μν = −(i/2)[�̌νμ, �̌μν] = 0. This establishes that the co-
variant continuity equation (25) is really valid in the formulation of gravity as a Yang-Mills
type gauge interaction.

On the other hand, the covariant continuity equation (25) can also be derived from the
conservation equation (24) of the effective current. The derivation procedure is given as
follows:

∇ν J ν
eff = ∇νJ

ν + i

2κ

[
∇ν Šμ − ∇μŠν − i[Šν, Šμ], �̌μν

]
− 1

2κ

[
[Šν, Šμ], �̌μν

]

+ i

κ
[Šμ,∇ν�̌

μν]

= ∇νJ
ν − 1

2κ

[
[Šν, Šμ], �̌μν

]
+ i

κ

[
Šμ,∇ν�̌

μν − i[Šν, �̌
μν]

]
− 1

κ

[
Šμ, [Šν, �̌

μν]
]

=
(
∇νJ

ν − i
[
Šν, J

ν
])

− 1

2κ

[
[Šν, Šμ], �̌μν

]
− 1

κ

[
Šμ, [Šν, �̌

μν]
]

= DνJ
ν, (28)

where the identity [[Šν, Šμ], �̌μν]/2+[Šμ, [Šν, �̌
μν]] ≡ 0 has been inserted. From the result

obtained in (28), one can show that the gauged covariant law of the conserved current density
is DνJ

ν = 0.
It is very interesting that the role of the cosmological constant in the gravitational gauge

theory is quite different from that in the Einstein gravity theory. The gravitational effect
of the cosmological constant term that can be expressed as −(iλ/4)(ϑμ

qϑ
ν
p − ϑμ

pϑν
q)

is automatically eliminated in (21) because its spin-connection covariant derivative van-
ishes (i.e. Dμ(ϑμ

qϑ
ν
p − ϑμ

pϑν
q) ≡ 0). This, therefore, means that the quantum vacuum

energy (governed in the gravitational field equation by a cosmological term) would actu-
ally make no contributions to gravitation in the present Yang-Mills formulation of grav-
itation. This can also be interpreted in an alternative but equivalent way: there is a term
−(iλ/2)(�̌μν)

pqϑμ
qϑ

ν
p in the interaction Lagrangian density Lint. This term can be rewrit-

ten as −λR/2. It should be noted that the variation of −λR/2 with respect to the spin-affine
connection vanishes because −λR/2 is a linear function of the spin-affine connection. This
will, unavoidably, change our understandings of the physical meanings and the roles of the
cosmological constant in gravitational interactions.

4 Spin-Connection Covariant Derivatives of Tensor and Spinor

The local Lorentz-group Yang-Mills type gauge symmetry for the spin-connection gravity
can be easily revealed in the formulation of vierbein. We define the Lorentz rotation (in
the representation of tensor) as Ur

s = ∂x ′r/∂xs and (U−1)s
t = ∂xs/∂x ′t , which satisfy the

orthogonality relation

Ur
s(U

−1)s
t = (UU−1)r

t = δr
t (29)

because of (∂x ′r/∂xs)(∂xs/∂x ′t ) = δr
t . In general, the Lorentz rotation (in the represen-

tation of tensor) can be written explicitly in terms of the Lorentz group generators as the
following exponential forms

Urs = exp

[
− i

2
αpq(J pq)rs

]
, Ur

s = exp

[
− i

2
αpq(J pq)r

s

]
, (30)
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where the Lorentz group generators (in the representation of tensor) are given by (J pq)rs =
i(ηprηqs −ηpsηqr ) and (J pq)r

s = i(ηprηq
s −ηp

sη
qr ). Here, ηpr denotes the flat Minkowski

metric, and ηq
s ≡ δq

s . We point out that the Lorentz group elements, Ur
t and Urt , have the

following properties:

(i) The Lorentz indices (i.e., the matrix indices r, s, t . . .) can be raised and lowered by
the flat Minkowski metric ηts , ηts , e.g., Urs = Ur

tη
ts and Ur

s = Urtηts , which can
be proved by using the form of Taylor series expansion of the local Lorentz group
elements defined in (30).

(ii) The inverse elements of the Lorentz group can be obtained by using the relations

(U−1)sr = Urs, (U−1)s
r = Ur

s. (31)

These two relations can also be verified by using the procedure of Taylor series expan-
sion.

(iii) The Lorentz transformation of a vector, say P r , can be written as

P ′r = ∂x ′r

∂xs
P s = Ur

sP
s, (32)

and then from (32), one can show that the infinitesimal transformation is δP r =
−(i/2)αpq(J pq)r

sP
s . This can become (1/2)αpq(η

prP q −P pηqr), which is consistent
with the infinitesimal Lorentz transformation δP r = αr

qP
q , where αr

q is an infinitesi-
mal transformation coefficient satisfying αr

q = αrsηsq with αrs being antisymmetric in
indices r, s.

At this stage, we present the covariant derivatives (containing the spin connection) of
tensors. It is apparent, for example, that the covariant derivatives of the two typical tensors
P νr and (P ν)rt are as follows:

DμP νr = ∇μP νr − i(Šμ)r
sP

νs, Dμ(P ν)rt = ∇μ(P ν)rt − i[Šμ,P ν]rt . (33)

By using the definition of the spin connection (Sμ)tr = ϑτt∇μϑτ
r , one can show from (33)

that the spin-connection covariant derivatives of the vierbeins vanish, e.g. Dμϑτt ≡ 0 and
Dμϑτ

t ≡ 0. According to the local Lorentz-group gauge transformations P ′νr = Ur
sP

νs and
D′

μP ′νr = Ur
s DμP νs (with D′

μ = ∇μ − iŠ ′
μ), one can have

∇μP ′νr − i(Š ′
μ)r

sP
′νs = Ur

s∇μP νs − iUr
s(Šμ)s

tP
νt ,

⇒ ∇μ

(
Ur

tP
νt

) − i(Š ′
μ)r

sU
s
tP

νt = Ur
s∇μP νs − iUr

s(Šμ)s
tP

νt ,

⇒ (
∂μUr

t

)
P νt + Ur

t∇μP νt − i(Š ′
μ)r

sU
s
tP

νt = Ur
s∇μP νs − iUr

s(Šμ)s
tP

νt , (34)

which leads to

∂μUr
t − i(Š ′

μ)r
sU

s
t = −iUr

s(Šμ)s
t ,

⇒ (Š ′
μ)r

sU
st = Ur

s(Šμ)st − i∂μUrt ,

⇒ (Š ′
μ)r

sU
st (U−1)t

p = Ur
s(Šμ)st (U−1)t

p − i
(
∂μUrt

)
(U−1)t

p,

⇒ (Š ′
μ)rp = Ur

s(Šμ)st (U−1)t
p − i

(
∂μUrt

)
(U−1)t

p. (35)
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This is exactly the local gauge transformation of the spin-affine connection. One can thus
show that the Hermitian spin-affine connection Š ′

μ automatically obeys the local Lorentz-
group gauge transformation rule. The transformation rule can also be written as (omitting
the matrix indices for simplicity)

Š ′
μ = UŠμU−1 − i(∂μU)U−1. (36)

This means that the spin-affine connection Šμ transforms exactly the same as the dynamical
variable of a Yang-Mills gauge field. In other words, this requires establishing a dynamics
of spin-affine connection for the gravitational interactions.

The Lorentz transformation of spinor is discussed in what follows in order to construct
a gravitational gauge field tensor (curvature) in the spinor representation. We shall consider
the representation of spinor for the Lorentz group and Lorentz rotation. We first discuss the
Lorentz transformation of spinor, and see the spin-affine connection in the representation
of spinor (the relations of spin-affine connections between the two representations: spinor
representation and tensor representation). We have considered the Lorentz transformation
operator Ur

s that operates on the vector and tensor, and studied the covariant derivative Dμ

of the vector and tensor. Let us now consider the Lorentz transformation operator that acts
on the spinors and the corresponding covariant derivative D(sp)

μ , namely, we shall apply the
Lorentz group in the representation of spinor to the local gauge field theory.

In the absence of gravity, the global Lorentz transformations of spinor (say, ψ , ψ̄ ) and
vector (say, ∂t ) are of the form [28, 29]

ψ ′ = U 1
2
ψ, ψ̄ ′ = ψ̄U−1

1
2

, ∂ ′
s = Us

t∂t . (37)

Here, we discuss the global Lorentz transformation of a scalar ψ̄γ s∂sψ :

ψ̄ ′γ ′s∂ ′
sψ

′ =
(

ψ̄U−1
1
2

)
γ ′s (

Us
t∂t

)(
U 1

2
ψ

)
= ψ̄γ t∂tψ. (38)

This requires γ t = U−1
1
2

γ ′sU 1
2
Us

t . Of course, the Dirac matrix γ ′s = γ s (this is valid under

the Lorentz transformation. This would, however, no longer hold in the Edwards transforma-
tion that is a coordinate transformation for anisotropic flat spacetimes [30]. Here, however,
the discussion is limited only to the case of isotropic flat spacetimes for convenience). As
is known, according to γ t = U−1

1
2

γ sU 1
2
Us

t (and hence γ t (U−1)t
s = U−1

1
2

γ sU 1
2
), one can

immediately obtain an important relation U−1
1
2

γ sU 1
2

= Us
tγ

t . Besides, it is well known that

the Lorentz group generator in the representation of spinor is given by �mn = (i/4)[γ m,γ n],
which satisfies the commutation rule of the Lorentz algebra [�mn,�pq] = i(ηnp�mq −
ηmp�nq − ηnq�mp + ηmq�np). By using the commutation relation [γ p,�mn] = (J mn)p

tγ
t

[28] and the relation U−1
1
2

γ sU 1
2

= Us
tγ

t , one can obtain the Lorentz transformation operator

in the representation of spinor as follows

U 1
2

= exp

(
− i

2
αmn�

mn

)
. (39)

Note that here the parameter αmn is independent of the spacetime coordinates, i.e., U 1
2

in (39)
is a global Lorentz transformation operator. If we consider the local Lorentz transformation,
then αmn = αmn(x

μ), and the ordinary partial derivative of spinor should be generalized to
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the covariant derivative that contains the compensating spin-affine connection gauge field
Bμ, i.e., D(sp)

μ = ∂μ − iBμ.
In general, as a dynamical variable of gauge field in the Yang-Mills field theory, Bμ (the

spin connection in the representation of spinor) is a fundamental physical quantity. In the
vierbein formulation for the Yang-Mills field theory, however, the fundamental quantities,
such as the gauge potential Bμ, could be constructed explicitly in terms of the vierbein fields.
One can, for example, choose the form Bμ = σ(Šμ)pq�qp , where σ is to be determined by
the spin-connection gauge transformation B ′

μ = U 1
2
BμU−1

1
2

− i(∂μU 1
2
)U−1

1
2

. It can be verified

that the parameter σ = i/2. In a word, after a considerable amount of computation, one can
immediately arrive at

D(sp)
μ ψ =

[
∂μ − i

i

2
(Šμ)pq�qp

]
ψ, (40)

i.e. D(sp)
μ ψ = [∂μ + (1/2)(Šμ)pq�qp]ψ . Now let us calculate the gauge field tensor (strength,

curvature) Bμν (which is defined by Bμν = i[D(sp)
μ , D(sp)

ν ]) associated with the local Lorentz-
group gauge transformation in the spinor representation: Bμν = ∂μBν − ∂νBμ − i[Bμ,Bν].
It can be verified that the relation between the gauge field strengths Bμν (in the spinor rep-
resentation) and (�̌μν)

rs (in the tensor representation) due to the local Lorentz rotation is
given by

Bμν = i

2
(�̌μν)

rs�sr . (41)

In what follows, we present a proof for the relation (41):

∂μBν − ∂νBμ − i[Bμ,Bν] = i

2

[
∂μ(Šν)

rs − ∂ν(Šμ)rs
]
�sr

+ i

4
(Šμ)pq(Šν)

rs[�qp,�sr ]. (42)

We shall now calculate the second term on the right-handed side of (42): i
4 (Šμ)pq(Šν)

rs ×
[�qp,�sr ] = − 1

4 [(Šμ)s
q(Šν)

rs�qr −(Šμ)pq(Šν)
r
q�pr −(Šμ)r

q(Šν)
rs�qs +(Šμ)p

r (Šν)
rs�ps].

It can be rewritten as 1
2 [(Šμ)r

t (Šν)
ts − (Šν)

r
t (Šμ)ts]�sr , which equals 1

2 [Šμ, Šν]rs�sr . Thus,
the gauge field strengths Bμν (in the spinor representation) in (42) takes the form

∂μBν − ∂νBμ − i[Bμ,Bν] = i

2

(
∂μŠν − ∂νŠμ − i[Šμ, Šν]

)rs

�sr . (43)

This is what we have presented in (41). It is the relation of curvature tensors between the
representations of tensor and spinor. This means that the gauge field tensor Bμν that results
from the commutation of covariant derivatives D(sp)

μ and D(sp)
ν (acting on the spinor fields)

is actually equivalent to another gauge field tensor �̌μν that results from the commutation
of covariant derivatives Dμ and Dν (acting on the vectors and tensors). For this reason, the
gravitational Lagrangian (quadratic in curvatures) that is constructed in terms of �̌μν for
this Yang-Mills formulation of gravity can also be expressed in terms of Bμν in the spinor
representation.
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5 Generalization of the Gravitational Gauge Theory

Now we generalize the present gravitational gauge theory in order to include the traditional
Yang-Mills fields (i.e., the internal gauge interactions [31]). It is of interest that the Einstein
equation of general relativity is one of the first-integral solutions to the field equation of
spin-connection Yang-Mills type gauge field (since the Yang-Mills type gravitational field
equation is a third-order equation of metric). But it should be noted that in the conventional
Yang-Mills gauge field theory, there were no ‘vielbeins’ addressed. As the spin connection in
the gravitational gauge theory can be expressed in terms of the vierbeins (the vielbein fields
in four dimensions are referred to as the vierbein fields), one can, by analogy, conclude that
the so-called ‘Yang-Mills vielbeins’ could also be defined, and the traditional Yang-Mills
connection can be expressed in terms of such ‘Yang-Mills vielbeins’. In other words, the
Yang-Mills gauge interaction can be described in the formulation of vielbeins.

The question of unifying the gravitational field with other gauge fields has long been
suggested [11–14] and, in the meantime, such a unification problem was always disturb-
ing physicists. In the literature, the research results have not yet answered unambiguously
whether the gravitational and the Yang-Mills fields have the same physical origin. In the
present paper, we have shown that the gravity can be reconstructed as a Yang-Mills type
gauge interaction when the Lorentz group is regarded as a local gauge symmetry group in
the vierbein formulation. On the other hand, we suggest that the gravitational field would not
be the only one which can be described in the formulation language of vielbeins. There may
be other fields that can also be formulated in terms of vielbeins. Take the Yang-Mills field
for example, the gauge potential, 1

ig λbN∂μζNa , has, as the following relation (48) indicates,
satisfied spontaneously the Yang-Mills local gauge transformation. Here, the Yang-Mills
gauge potential is expressed in terms of the vielbein fields (ζNa and its complex conjugate
λaN ), which, we shall, for brevity, call them the Yang-Mills vielbeins, to distinguish them
from both the vierbeins defined on the four-dimensional spacetime introduced before and
the generalized vielbeins to be introduced later in this section.

Now we consider the Yang-Mills gauge field structure by using the vielbein language
and attempt to reformulate the traditional Yang-Mills gauge field theory as a vielbein field
theory. Define the Yang-Mills vielbein fields ζMa and λaN as follows

ζMaλaN = δM
N, λaNζNb = δa

b, ζM
aλaN = gMN, λaNζN

b = ηab, (44)

where gMN and ηab can be considered to be “curved” metric and “flat” metrics, respec-
tively, on the Yang-Mills gauge group manifold. The Latin indices a, b, c . . . and M,N,L . . .

denote the matrix indices of the Yang-Mills vielbeins in the matrix representation. In an
su(n) group, for example, both a and M runs over from 1 to n. If the metrics are Her-
mitian, then one can arrive at ζ † = λ, i.e., (ζNb)

∗ = λbN , (ζNb)∗ = λbN , (ζN
b)∗ = λb

N , and
(ζN

b)
∗ = λb

N . We assume that the Yang-Mills vielbein field satisfies the equation of motion
(∂μ − igAμ)ζN = 0, i.e. the component equation is given by

∂μζNa − ig(Aμ)a
bζ

Nb = 0, (45)

where Aμ and g denote the Yang-Mills gauge field potential (dynamical variable) and the
coupling coefficient, respectively. The indices a, b of (Aμ)a

b are the matrix indices of the
generators of the gauge algebras in certain representations, to which ζN belongs. It follows
from (45) that the Yang-Mills connection is given by

g(Aμ)a
b = 1

i
λbN∂μζNa. (46)
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Now we show that the gauge potential (46) really agrees with the local gauge transfor-
mation. Here, the gauge transformations of the Yang-Mills vielbein fields are

ζ ′Na = Ua
bζ

Nb, λ′
cN = λdN(U−1)d

c. (47)

Then, the local gauge transformation of the dynamical variable of Yang-Mills field is given
by

(A′
μ)a

c = 1

i
λ′

cN∂μζ ′Na

= 1

i
λdN(U−1)d

c∂μ

(
Ua

bζ
Nb

)

= Ua
b

1

i
λdN

(
∂μζNb

)
(U−1)d

c + 1

i
λdNζNb(U−1)d

c∂μUa
b

= Ua
b(Aμ)b

d(U
−1)d

c − i
(
∂μUa

d

)
(U−1)d

c

= (
UAμU−1

)a
c − i

(
(∂μU)U−1

)a
c. (48)

Thus, we have the well-known Yang-Mills local gauge transformation

A′
μ = UAμU−1 − i(∂μU)U−1. (49)

This, therefore, means that the Yang-Mills dynamical variable, Aμ, expressed in terms of
the so-called Yang-Mills vielbeins can automatically obey the local Yang-Mills gauge trans-
formation.

We have shown that both the gravitational field theory (e.g. GR) and the Yang-Mills
gauge field theory can be reconstructed in the formulation of vielbeins. This provides us
with new insight into a possible way to unify these two gauge fields based on generalized
vielbein fields. In order to distinguish the indices between the gravitational vielbeins and
the Yang-Mills vielbeins, we choose e.g. N and a (instead of N and a used in the above)
to represent the indices of the Yang-Mills vielbeins. In this paper, we impose constraints on
the generalized vielbein fields �μ

r
Na and Er

μaN :

�μ
r
Ma E rν

a
N = gμνMN, E s

μ
bN�μr

N
a = ηsrba, (50)

where gμνMN and ηsrba denote the generalized curved and flat metrics, respectively. Then
we suppose that the generalized vielbeins agree with the following equations of motion

(∇μ − iQμ

)
�αN = 0,

(51)
∇μ�αrNa − i(Qμ)r

s
a
b�

αsNb = 0,

where the second equation represents each component of the first equation. Here, Qμ can be
referred to as the generalized spin-affine connection in contrast to the ordinary spin-affine
connection addressed in the preceding sections. Multiplying (51) by generalized vielbeins
EtαcN , one can arrive at

EtαcN∇μ�αrNa = i(Qμ)r
s
a
b EtαcN�αsNb

= i(Qμ)r
s
a
bηt

s
c
b

= i(Qμ)r
t
a
c. (52)
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Then the dynamical variable (connection) of the generalized gauge field theory is given by

(Qμ)r
t
a
c = 1

i
EtαcN∇μ�αrNa, (53)

which is a generalization of both the Yang-Mills connection (46) and the spin-affine con-
nection (Šμ)r

t .
Now we consider the generalized gauge transformation for the generalized gauge field.

First we present the generalized gauge transformation of the generalized vielbein fields as
follows

�′αrNa = Ur
s
a
b�

αsNb, E ′
tαcN = EpαdN(U−1)p

t
d
c. (54)

Based on (54), the generalized gauge transformation for the dynamical variable Q′
μ in the

present prescription of the generalized gauge field can be obtained:

(Q′
μ)r

t
a
c = 1

i
E ′

tαcN∇μ�′αrNa

= 1

i
EpαdN(U−1)p

t
d
c∇μ

(
Ur

s
a
b�

αsNb
)

= Ur
s
a
b

1

i
EpαdN

(∇μ�αsNb
)
(U−1)p

t
d
c + 1

i
EpαdN�αsNb(U−1)p

t
d
c∂μUr

s
a
b

= Ur
s
a
b(Qμ)s

p
b
d(U

−1)p
t
d
c − i

(
∂μUr

p
a
d

)
(U−1)p

t
d
c

= (
U QμU−1

)r

t
a
c − i

(
(∂μU)U−1

)r

t
a
c. (55)

This means that the generalized gauge transformation is given by

Q′
μ = U QμU−1 − i(∂μU)U−1. (56)

Thus, we have shown that the transformation (56) for the dynamical variable of the gener-
alized gauge field is analogous to the Yang-Mills gauge transformation. It should be noted
that here the matrix indices (components) of the gauge transformation (56) include both the
Lorentz indices r, s, t . . . (for the gravitational vielbeins) and the Yang-Mills gauge-group
generator indices a, b, c . . . (for the Yang-Mills vielbeins).

As far as the dynamical variable of the generalized gauge field (53) is concerned, the
gravitational field and the Yang-Mills gauge field can comply with the same gauge transfor-
mation (56), and surely obey the same kind of field equations. In order to compare this
scenario with the traditional gravitational and Yang-Mills gauge field theories, we shall
demonstrate that both the conventional gravitational field and the Yang-Mills gauge field
can originate from the present generalized gauge field theory. If, for example, the general-
ized vielbeins can be factorized, i.e., they can be expressed as the products of gravitational
vielbeins and Yang-Mills vielbeins:

�αrNa = ϑαrζNa, EtαcN = etαλcN , (57)

then the dynamical variable of the generalized gauge field becomes

(Qμ)r
t
a
c = 1

i
etαλcN∇μ

(
ϑαrζNa

)

= 1

i
etαλcN

(∇μϑαr
)
ζNa + 1

i
etαλcNϑαr∇μζNa

= (Šμ)r
tη

a
c + g(Aμ)a

cη
r
t , (58)
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where ηa
c = δa

c and ηr
t = δr

t . From the relation (58), we can see that the generalized gauge
field (Qμ)r

t
a
c can be decomposed into two parts: (Šμ)r

tη
a
c and g(Aμ)a

cη
r
t , which we can

interpret as the gravitational gauge field and the Yang-Mills gauge field, respectively. It
would be easy to construct the Lagrangian densities and then to obtain the field equations
for the generalized vielbein fields, where both the gravitational gauge field equation and the
Yang-Mills equation are involved within the same framework.

6 Discussions and Concluding Remarks

As is well known, in the formulation of metric and Levi-Civita connection, the dynamical
variable of gravitational field is the metric. In the formulation of vierbein and spin-affine
connection, however, the dynamical variable of the gravitational field is the spin-affine con-
nection, and then GR becomes a Yang-Mills type gauge field theory. We have considered
the gauge approach to gravitation and suggested a gravitational field equation within the
framework of spin-connection gauge theory for torsion-free gravity. One of our aims in this
paper is to develop a theory of local Lorentz-group spin-connection gauge field as elemen-
tary a point of view as possible and to derive it as a natural consequence of the Yang-Mills
gauge field theory. The Yang-Mills type gravity theory has been extended to include the
other Yang-Mills type interactions. By following the procedure of the gravitational gauge
theory, the Yang-Mills vielbeins were defined and then used to construct the Yang-Mills
connections. This enables us to suggest a possible route to unify gravity and Yang-Mills
fields in the framework of the generalized vielbeins (this might be referred to as the two-
fold vielbeins of composite spacetime manifold, the affine connection of which has both the
gravitational indices r, s, t . . . and the Yang-Mills gauge group indices a, b, c, . . .).

We have shown that the cosmological constant, λ, in the Yang-Mills type gravity theory,
where the spin-affine connection becomes the dynamical variable of the local Lorentz-group
gauge field, has already been eliminated (simply because the dynamical equation is a third-
order differential equation of metric), and actually makes no gravitational contributions.
However, as the Einstein field equation is a first-integral solution to the Yang-Mills gravita-
tional gauge field equation, an integration constant term (say, �gμν ) that can appear in the
Einstein field equation would naturally play an equivalent role of the cosmological constant,
but its value depends on the realistic physical conditions (such as the initial or boundary con-
dition) of the gravitating system itself. In other words, the present gauge field equation of
Yang-Mills type can automatically exhibit an effective cosmological constant �, though the
infinite (or very large) quantum vacuum energy density (expressed by λ) no longer makes
any contributions to gravitation. Obviously, the physical meaning of the present equivalent
cosmological constant � is no longer the density of vacuum energy or dark energy, either.
Additionally, the idea that we view the practical (observed) cosmological constant term as
an integration constant term could naturally interpret the observed cosmological constant
value that is close to the critical density: specifically, the integration constant of the solu-
tions (to the Yang-Mills type field equation or, equivalently, to the SKY equation) depends
on the cosmological characteristic scale, if we apply the solutions to the dynamical equations
of the cosmic evolution and structure. Thus, the equivalent cosmological constant value �

would be related closely to the cosmic large-scale structure or the boundary condition (e.g.
� � 1/a2 with a being the typical scale of the Universe). This makes the observed cosmo-
logical constant � close to the critical density, as demonstrated in observational cosmology
[1–3].
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Although in the literature many researchers have investigated the gravity with torsion
[8, 9], yet less attention was paid to the Riemann-Cartan geometry [32–34] with the spin
connection being the dynamical variable. One of such cases is the Yang-Mills type equation
for the complex-metric gravity, where both torsion and curvature emerge (since the con-
torsion that is a tensor in the theory of real and symmetric metric is no longer a tensor in
the complex-metric theory of gravitation, the contorsion cannot vanish, and as a result, the
torsion is necessary in the complex-metric theory). We believe that it is worth extending the
present torsion-free gravitational gauge field theory to the torsional gravity. We hope that it
could open a possible research field for considering the gravitational contributions of spin
(including the graviton spin contribution to gravitation [35]) by means of other ways than
the Cartan gravity theory [32–34].
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